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Abstract. The notion of half-density has been used for a long time within the context of
the semiclassical approximation. We show in this paper that the inclusion of half-densities in
Bohmian mechanics leads to a very simple theory of motion when one uses Hamilton-Jacobi
theory; in particular, one immediately recovers Maslov’'s semiclassical approximation without
extra calculations.

1. Introduction

The mathematical foundations of Bohmian mechanics, also known as ‘the quantum theory
of motion’ [13], have recently received much attention; Bereidal [2] have, for instance,
proven global existence theorems for large classes of potentialgirirebal [4] one finds an
analysis of the conceptual principles of Bohmian mechanics. Also see Holland’s treatise [13]
for a careful analysis of Hamilton—Jacobi theory within the context of Bohmian mechanics.
The aim of this paper is to relate Bohmian mechanics to the theory of half-densities on
Lagrangian manifolds which we introduced in de Gosson [10, 11]. The underlying idea is
that it is the square roots of densities, and not the densities themselves, which intervene in
guantum mechanics. This idea is certainly not new, and can be traced back to van Vleck
[20]. Itis being used in various quantization schemes related to semiclassical approximation
theories (for instance, the WKB method) together with the ‘metaplectic correction’, where
it is fruitfully used to eliminate the difficulties due to the occurrence of ‘caustics’; see,
for instance, [9] and the references therein. Surprisingly enough, it turns out that the
inclusion of half-densities in Bohmian mechanics leads to a quantum mechanics in phase
space totally different from the traditional Wigner—Weyl-Moyal formalism or its variants.
We are actually going to show (proposition 2, section 3) that if one transports an ‘initial’
half-density¥o(g)|d"¢|*? using the Hamiltonian flow associated to the ‘Bohmi&hy UY

(UY the ‘quantum potential’) then one obtains, up to a phase fastahe half-density

(0, 1)|d" Q|2 where Q is the point of the trajectory originating from at time+ = 0 and
reached at time, and (-, t) is the solution to Sclidinger’s equation associated with

and such thaty (-, 0) = . The phase factor is then the exponential

i
R = exp[ﬁ/pdq —(H+UY) dt]
1 E-mail address: mdg@itm.hk-r.se
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where the action integral is calculated along the Bohmian trajectory in phase space starting
from the point g, V,S0(g)) at the instant = 0 and reaching the poin), Vo So(Q, 1)) at
time z. That Bohmian trajectory is determined by the usual Hamilton equations of motion,
associated not to the Hamiltonial, but to the ‘Bohmian’H + UY. If one neglects
the quantum potentialU¥, then one recovers the usual formulae of the semiclassical
approximation, as in, for instance, Maslov and Fedoriuk [16]. This is conceptually
interesting, because it clearly demonstrates that the domain of validity of the semiclassical
approximation is that of vanishing quantum potentials, and that the Bohmian theory of
motion allows the use of concepts and terminology from classical mechanics to study
guantum mechanics.

We begin by showing in section 2 that Setinger’s equation for quadratic Hamiltonians
can be derived from classical mechanics using equation (2.10) which governs the evolution
of the square root of a density.

2. Derivation of Schrodinger’s equation for quadratic Hamiltonians

Itis a well known fact that Sclidinger’s equation can be derived from Hamilton’s equations
of motion for all polynomial Hamiltonians that are at most quadratic functions of the
coordinatesy, p ([6,9,12,18] is certainly a non-exhaustive list of references where this
is explicitly done). The usual argument goes as follows: the figiy, associated with
such a Hamiltonian consists tihear symplectic transforms, and can thus be ‘lifted’ to a
group (F,), of unitary operators acting oDZ(R;) (in fact, a subgroup of the metaplectic
groupM p(n), which is a twofold covering group of the symplectic graup (n)). One then
checks, using a Lie algebra argument (see [6-8, 12, 14, 15]) Fhatsatisfies Sclidinger’s
equation

_d .
|hEF, = HF, (2.1)

whereH is the usual Hamiltonian operator associated withWe are going to give in this
section adirect derivation of Schdinger’'s equation for all Hamiltonians of the type

H(q,p,1)=3p°+3Rq -q (22)
whereR is a real symmetria x n matrix; we are using here obvious notation, for instance we
have sep? = p2+- - -+ p2. The argument that will follow can actually be adapted with some
minor modifications to arbitrary quadratic Hamiltonians with time-dependent coefficients.
It is a variant of that used in [18] and involves less calculations. It demonstrates, moreover,
our aim clearly, which is to advertise the essential role played by the notion of half-density
in the context of Sclirdinger's equation. We first observe that Hamilton’s equations of
motion for H are

dg dp

a F dt
so that the Hamiltonian flow f;), is a one-parameter subgroup of the symplectic group
Sp(n); in fact,

fi= exp[r (_OR Ié) ] (2.4)

so that for small values df| we have

fi= (_?R t0’> + 0. (2.5)

= —Rgq (2.3)
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Here I (respectively, 0) is the: x n identity (respectively, zero) matrix an@(z?) is a
2n x 2n matrix whose entries are all(@). It follows that there exist§ > 0 such that
f; is afree symplectic transformation for & |¢| < T. Now let S be the two-point free
generating function determined Wy (see, for instance, [1]). This function is determined
by the conditions

N
P = @(Qt qvt)
(Q,P)=filg,p) & 55 (2.6)
P = _@(Qv q’t)

and satisfies the relation
t
S(q(t),q,t)=/ pdq — Hdt' (2.7)
0

where the integral is calculated along the trajectory friprto QO = ¢(¢). It follows from
(2.7) thatS satisfies the Hamilton—-Jacobi equation

3
— HH(Q, VoS) = 0. (2.8)

Another important property of is the following: denote by/ (Q, ¢, t) the determinant of
the Hessian (matrix of second derivatives)St, ¢, ):

J(Q.q.1) = det S (Q.q.1) (2.9)
’ q7 - a Qaq k] qv . .
Then J satisfies the ‘continuity equation’.
aJ
¥+VQ-JV,,H=O. (2.10)

(See [16,lemma 3.2.1,p 96]). This property in fact holds true for the free generating
function determined by aarbitrary Hamiltonian. However, in the present case (quadratic
Hamiltonian) thef, are linear, and the generating functiSns thus itself quadratic in the
variablesQ andg, as can easily be seen from (2.4) and (2.7), so thdbes not contain

the variables; and Q. Equation (2.10) thus becomes

aJ 5

5 +JVpS=0 (2.11)
noting thatv, H = VS in view of (2.3) and (2.6). Let now be an ‘initial wavefunction’;
we assume thafyo is in the Schwartz spac®(Ry), but the argument we are going to present
obviously remains valid under less stringent conditiong/gn We claim that a solution to

Schiddinger’s equation

iﬁ‘z—f = H(q. —ihV,)¥ (2.12)

is given, for O< |z| < T, by the formula

vig.1) = (ZWW)”/Za(f)/exp(;:ls(qu',t))l//o(q/) d'q’ (2.13)

wherea(t) is a conveniently chosen ‘square root’ &z). In fact, that square root can be
chosen in such a way that

lim W(g. 1) = Wo(q). (2.14)
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The proof goes as follows. Differentiating both sides of (2.13) with respect to the variable
¢t and taking the Hamilton—Jacobi equation (2.8) into account, we get

iﬁ% = (Zniﬁ)”/Z/exp(;l:S> [H(q, —ihV,a) + iﬁaa—‘:]wo(q/) dq’.
Performing similar calculations for the second-orgederivatives we also have
H(q, —ihV,)¢ = (Zniﬁ)_”/Z/exp<}i—_lS)[H(q, —ihV,a) + %av55:|l/fo(q/) dq’.
Now, a = +/J satisfies the equation

— +2V35.4a=0 (2.15)

in view of (2.10) andyr thus solves Sclidinger's equation (2.12) as claimed. Suppose
now we letr — 0+; we can evaluate the integral on the right-hand side of (2.12) by the
method of the stationary phase, and one finds that Jy¥ (g, 1) = £¥s(g), depending on
how the argument of the square root.bis chosen: ifJ(t) > 0 theny/J (1) = +(J (t))Y/?,

if J(t) < 0theny/J(r) = %i|J ()| It turns out that there exists efficient and systematic
procedures for determining the correct choice; they suggest to us the notitastiv index
which we have extensively analysed in [6-8]. If, for instance, we wfitan block-matrix

form
= (A(t) B(t)>
C@) D)
then a straightforward calculation involving (2.6) yields
S(q.q'.t)=3DB'q-q— B 'q -q'+3B'Aq - q' (2.16)
and

n/2 e ,
W(q,n:(ﬁ) i"®| det(B(r))| /2 f e/MS@aDy0(gdg'  (2.17)
T

wherem(t) is the inertia(= number of less then zero eigenvalues) of the makiix); one

thus recovers the Robbin—Salamon formula (theorem 8.5 in [17]). We shall not continue to
discuss these formalities here, because what is really important for our present purpose is that
we used, to derive Schdinger’s equation (2.12), the only Hamilton—-Jacobi equation (2.8)
together with equation (2.14) which governs the evolution ofgteare rootof a density,

i.e. of ahalf-density We notice that explicit formulae of the type (2.17) are often used in
the physical literature, the usual reference being Feynman-Hibbs [4]. We want, however,
to emphasize that this formula is not obtained by dubious ‘path integral’ techniques, but is a
simple rigorous consequence of classical Hamilton—Jacobi theory as we have just shown. We
also observe that from classical mechanics we cannot claim that we have dguietim
mechanics we have only derived Schdinger's equation. For quantum mechanics to
become effective one needs to justify the need for Planck’s constartis is particularly
apparent for Hamiltonians of the type considered in this section, because of Ehrenfest’s
theorem on average values. For instance, if one imposes that the initial wavefuligtion

a Gaussian ‘minimum wavepacket’, then the evolutior{bfg, 1)|?> and of |®(p, 1)|? (P

the Fourier transform o) is that of classical Gaussian probability densities with spreading
Agq(t) and Ap(t) such thatAp(t)Aq(t) > h/2 and this is true foany value of. For a
discussion of the need for Planck’s constant, and an effective quantization procedure making
use of the Maslov index and leading in a rigorous way to the EBK condition we refer the
reader to [8,9,12,13].
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3. Moving half-densities by the Bohmian flow

From now on we assume théat is a Hamiltonian function of the more general type
p2
H="%+U@.n 3.1)

the potentiall being aC* function of positiong and timer. We assume that the solution
Y of the associated Sdabdinger equation

mij—‘f = H(q, —ihV,)¥ Yt =0) = o (3.2)

exists and isuniquely defined for allz in some interval £ T, T] (or [0, T]). If we write
in polar form as

Uig.1) = exp(%sw, t))mq, 0 (3.3)

then the functionsS and p satisfy Bohm’s equations (see [3, 13])

d
T+ Va(pY,8) =0 (3.40)
3S R2 V3(/P)

E‘FH(‘], VqS)—? \/ﬁ (3-40)

at all points wherep does not vanish (we assume throughout thand o are sufficiently
smooth (for instance;*°) so that the equations (3.4) make sense). Introducingta@tum
potential

h? V2

UV = —— 4 VP (3.5)

2 /o
which only depends on the initial functiafy which totally determineg (and hencep and
S), we can rewrite equation (&) in the very suggestive form

as

PP HY(q,V,5) =0 (3.4)
where HY (‘the Bohmial) is the sumH + UV . Equation (34c) is obviously nothing more
than the Hamilton—Jacobi equation for the Bohmian functih.

Remark. It is common practice among physicists to calculate ‘approximations’ to the
solutions of (3.2) by ‘neglecting’ the quantum potenti@” and replacing the correct
equation (34c) by its classical counterpart (2.8). However, this is indeed a risky procedure:
it is not because there is a factor of orde@€) in front of the expression on the right-hand
side of formula (3.5) that the quantum potentiaf is necessarily small. In fact, singe
depends ort it can very well happen that/¥ ‘blows up’ at the limiti — 0 (see [13] for
examples where this occurs). In fact, the validity of the approximatioh = 0’ is closely
related to that of the method of the stationary phase, when one tries to estimate the solution
Y written in integral form (as in formula (2.13) for instanc&Yhenthe method does apply
(this is the case for (2.13) when the initial wavefunction has compact support), then the main
contribution at the limiz — 0 comes from the critical points of the generating function, and
one shows that the result amounts to moving the wavefunction alorgabsical trajectory
associated with the original Hamiltonidt.
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Settings = 0 in (3.3) the initial wavefunction can be written as

Yolg) = exp(,;:so@) Voo@) (3.6)

wherepg = p(g, 0) and Sy = S(g, 0) are realC* functions defined on some open domain
D of R7. Let Lo be the graph of the gradient 6§; it is the manifold

Lo=1{(g.p):p=V45(q).q € D}. (3.7)

Lo is in fact a Lagrangian submanifold of the phase sp&fe R, that is, it has dimension
n and the canonical symplectic form

Q=dpi1Adg1+---+dp, A dg,

vanishes on any pair of tangent vectorsiip. We notice that sincd.g is a graph, the
restrictionmg to Lo of the projectionr : (¢, p) — ¢ is a diffeomorphism andi(y, 7o) is
thus a global chart.

Denote now by(f,"”,,),,,/ the time-dependent flow associated with the ‘BohmiatY ;

f,‘ﬁ/ is thus the symplectic transformation of phase space defined by

@@, p" @) = £ . p)
if and only if

=V,HY —— =-V,HY (3.8)

andg¢¥(t) = ¢q, p¥(t) = p. Using the Bohmian flow thus defined we can carry the
manifold L in phase space to another manifdld Defining

Li=f'Lo  f'=4£% (3.9)
we obviously havef,”, (L,) = L,.
Proposition 1. The manifoldL, is a Lagrangian submanifold @ x R} which projects
diffeomorphically onD, = f,"’(DO). In fact L, is the graph

L, ={(Q,P): P=VS(0Q, 1)} (3.10)

and we have, moreover,

S(g¥ (1), 1) = So(q) +/O pdg — HV dt’ (3.11)

where the integration is performed along the phase-space trajectory leadingyfr&ysg)
attimer =0to (Q, P) = (¢" (1), V,S(g¥ (1), 1)) at timez.

Proof. That L, is a Lagrangian manifold is clear, becauﬁ@ is a symplectic mapping
and as such preserves the symplectic structh;Y.(:)*Sz = Q. Formula (3.11) is a classical
application of Hamilton—Jacobi theory (see [1,ch 9]): define the action function

®(0, 1) = Solq) +/ pdg — HY df
0

where the integration is performed along the trajectory frgmp( 0) to (Q, P, t). Then
d®(Q, 1) = PdQ — HY dt
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so that we have

r=201 2w p.n

- aQ ’ 81‘ - ’ ’ .
In particular,® satisfies the Hamilton—Jacobi equation4¢3 with initial condition So, and
henced® = §; formulae (3.10) and (3.11) follow. O

Remark. The fact thatZ, is itself a graph is noticeable, because, in general, Hamiltonian
flows deform graphs in such a way that they become new manifolds which usually ‘bends’
after some time, and thus are no longer graphs. This well known phenomenon is at the
origin of the appearance of ‘caustics’, that is, of points of the deformed manifold who admit
no neighbourhood projecting diffeomorphically on configuration space (see [1, 9, 14, 15] and
the references therein). The appearance of these caustics is actually an artifact of Hamilton—
Jacobi theory, related to the impossibility of finding global solutions to the Hamilton—Jacobi
equation. This does not happen in our case, because we already have at hand a globally
defined solution, namely the phaSéy, r) of the wavefunction.

We now return to the half-density interpretation of wavefunctions. Our main result is
the following.

Proposition 2. The notation being as in proposition 1, we have

1/2

2
0”0 o) (3.12)

det

@’ @), 1) = eXpU:/o pdg — HY dt’:|

wheredq? /dq is the Jacobian matrix; denoting bygthe Lebesgue measure 6tj and
by |d"¢|Y/? the associated half-density, formula (3.12) is equivalent to

H t
w(Q,nld"QIY? = exp[}_l / pdg — HY dz/}%(qnd"qﬁ/z. (3.13)
0

Proof. The equivalence of (3.12) and (3.13) is clear in view of the definition of the half-
density|dq|Y/? (see, for instance, [19]). On the other hand, the arguments of both sides of
(3.12) (or (3.13)) are equal in view of (3.11), so that all we have to prove is the equality of
the moduli of both sides of (3.12). This amounts to proving that

g (1)
dq

det

po(q) = p(q” (1), 1) (3.14)

which is, in fact, an immediate consequence afl¢3. it is a classical results from fluid
mechanics that if a functiop is the solution to the continuity equation

ap
Z 4V, (pV)=0
8t+ (V)

whereV = V(q, t) is some fluid velocity field, them (g, t) satisfies the relation

det 24

p(q,0) =p(q@),1) 5
q

Applying this formula to (34a) with V(q,t) = 39S5(q, t)/dq Yyields (3.13). O
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4. Semiclassical approximation

Suppose now that the quantum potentidl can be neglected. Formula (3.13) then becomes
in view of (3.11), as long asis small,
1/2

90O otq) (4.)

det——=
dq

(q(t). 1) = exp[}'l:dnq(r), r)]

where® = ®(q, t) is the solution of the classical Hamilton—Jacobi equation

P

o5 TH@ V®.1)=0 (g, 0) = So(q) (4.2)
andg(r) and p(r) are the solutions of Hamilton’s equations

dg (¢ dp(¢

YO v, 0. p0.0 PO = g, 0. (43)

For larger values of, the solution to (4.2) will, in general, no longer existowever, the
action integral

t
W:/ pdg — Hdt' (4.49)
0

does,but it will in general be multiple valued: as discussed previougdlyz) = f;(Lg)
(the image ofLqy by the flow (f;), determined by (4.3)) is usually no longer a graph,
so that there will be several pointg((), P;) of L, with the same projectiory () on
the configuration spac®y. Defining the points(g;, p;) € Lo by fi(g;. pj) = (q(1), P))
the correct formula that replaces (4.1) for arbitrariakes into account the contributions
from all the classical trajectories starting from the points p;) and ending at the points
(g@®), P;)) = (q(1), pj(t)). One then recovers Maslov’'s formula for the semiclassical
approximation (see [1,9, 11, 16])
—1/2
U(g, 1) = Ze(i/ﬁ)q’_/(x-t)iﬂj

Vo, j) (4.5)
7

as long as(, t) is not a ‘focal point’ (i.e.g is not the projection of a point of the caustic).
The functions®; (x, ¢) are given by

det—aqj @
dg

(g, 1) = So(qj)+/o L(q.q,t)dt (4.6)

whereL = pg — H is the Lagrangian function and the appearing as exponents in (4.5)
are integers called ‘Morse indices’ of the trajectories frgmo ¢ (¢) (see [1, appendix 11].

We refer the reader to [9—-11] for a thorough study of formulae (4.5) and (4.6), and of the
relation between the Morse indices and the Maslov index).

5. Conclusion

The semiclassical formula (4.5) is usually obtained by quite different approaches, which,

however, have in common the fact that they all make use of the method of the stationary
phase. The way we have derived formula (4.5), which only makes use of proposition 2,

shows that the half-density approach might be a promising one, both in standard quantum
mechanics and in quantum theory of motion. We think that this method, therefore, certainly

deserves further study because it might be the key to a better understanding of quantum
mechanics.
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