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Abstract. The notion of half-density has been used for a long time within the context of
the semiclassical approximation. We show in this paper that the inclusion of half-densities in
Bohmian mechanics leads to a very simple theory of motion when one uses Hamilton–Jacobi
theory; in particular, one immediately recovers Maslov’s semiclassical approximation without
extra calculations.

1. Introduction

The mathematical foundations of Bohmian mechanics, also known as ‘the quantum theory
of motion’ [13], have recently received much attention; Berndlet al [2] have, for instance,
proven global existence theorems for large classes of potentials; in Dürr et al [4] one finds an
analysis of the conceptual principles of Bohmian mechanics. Also see Holland’s treatise [13]
for a careful analysis of Hamilton–Jacobi theory within the context of Bohmian mechanics.
The aim of this paper is to relate Bohmian mechanics to the theory of half-densities on
Lagrangian manifolds which we introduced in de Gosson [10, 11]. The underlying idea is
that it is the square roots of densities, and not the densities themselves, which intervene in
quantum mechanics. This idea is certainly not new, and can be traced back to van Vleck
[20]. It is being used in various quantization schemes related to semiclassical approximation
theories (for instance, the WKB method) together with the ‘metaplectic correction’, where
it is fruitfully used to eliminate the difficulties due to the occurrence of ‘caustics’; see,
for instance, [9] and the references therein. Surprisingly enough, it turns out that the
inclusion of half-densities in Bohmian mechanics leads to a quantum mechanics in phase
space totally different from the traditional Wigner–Weyl–Moyal formalism or its variants.
We are actually going to show (proposition 2, section 3) that if one transports an ‘initial’
half-density90(q)|dnq|1/2 using the Hamiltonian flow associated to the ‘Bohmian’H +Uψ

(Uψ the ‘quantum potential’) then one obtains, up to a phase factorℵ, the half-density
(Q, t)|dnQ|1/2 whereQ is the point of the trajectory originating fromq at time t = 0 and
reached at timet , andψ(·, t) is the solution to Schrödinger’s equation associated withH
and such thatψ(·, 0) = ψ0. The phase factor is then the exponential

ℵ = exp

[
i

h̄

∫
p dq − (H + Uψ) dt

]
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where the action integral is calculated along the Bohmian trajectory in phase space starting
from the point (q,∇qS0(q)) at the instantt = 0 and reaching the point (Q,∇QS0(Q, t)) at
time t . That Bohmian trajectory is determined by the usual Hamilton equations of motion,
associated not to the HamiltonianH , but to the ‘Bohmian’H + Uψ . If one neglects
the quantum potentialUψ , then one recovers the usual formulae of the semiclassical
approximation, as in, for instance, Maslov and Fedoriuk [16]. This is conceptually
interesting, because it clearly demonstrates that the domain of validity of the semiclassical
approximation is that of vanishing quantum potentials, and that the Bohmian theory of
motion allows the use of concepts and terminology from classical mechanics to study
quantum mechanics.

We begin by showing in section 2 that Schrödinger’s equation for quadratic Hamiltonians
can be derived from classical mechanics using equation (2.10) which governs the evolution
of the square root of a density.

2. Derivation of Schrödinger’s equation for quadratic Hamiltonians

It is a well known fact that Schrödinger’s equation can be derived from Hamilton’s equations
of motion for all polynomial Hamiltonians that are at most quadratic functions of the
coordinatesq, p ([6, 9, 12, 18] is certainly a non-exhaustive list of references where this
is explicitly done). The usual argument goes as follows: the flow(ft )t associated with
such a Hamiltonian consists oflinear symplectic transforms, and can thus be ‘lifted’ to a
group (Ft )t of unitary operators acting onL2(Rnq) (in fact, a subgroup of the metaplectic
groupMp(n), which is a twofold covering group of the symplectic groupMp(n)). One then
checks, using a Lie algebra argument (see [6–8, 12, 14, 15]) that(Ft )t satisfies Schr̈odinger’s
equation

ih̄
d

dt
Ft = ĤFt (2.1)

whereĤ is the usual Hamiltonian operator associated withH . We are going to give in this
section adirect derivation of Schr̈odinger’s equation for all Hamiltonians of the type

H(q, p, t) = 1
2p

2+ 1
2Rq · q (2.2)

whereR is a real symmetricn×nmatrix; we are using here obvious notation, for instance we
have setp2 = p2

1+· · ·+p2
n. The argument that will follow can actually be adapted with some

minor modifications to arbitrary quadratic Hamiltonians with time-dependent coefficients.
It is a variant of that used in [18] and involves less calculations. It demonstrates, moreover,
our aim clearly, which is to advertise the essential role played by the notion of half-density
in the context of Schr̈odinger’s equation. We first observe that Hamilton’s equations of
motion forH are

dq

dt
= p dp

dt
= −Rq (2.3)

so that the Hamiltonian flow(ft )t is a one-parameter subgroup of the symplectic group
Sp(n); in fact,

ft = exp

[
t

(
0 tI

−R 0

)]
(2.4)

so that for small values of|t | we have

ft =
(

0 tI

−tR 0

)
+O(t2). (2.5)
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Here I (respectively, 0) is then × n identity (respectively, zero) matrix andO(t2) is a
2n × 2n matrix whose entries are all O(t2). It follows that there existsT > 0 such that
ft is a free symplectic transformation for 0< |t | < T . Now let S be the two-point free
generating function determined byH (see, for instance, [1]). This function is determined
by the conditions

(Q, P ) = ft (q, p)⇔


P = ∂S

∂Q
(Q, q, t)

p = −∂S
∂q
(Q, q, t)

(2.6)

and satisfies the relation

S(q(t), q, t) =
∫ t

0
p dq −H dt ′ (2.7)

where the integral is calculated along the trajectory fromq to Q = q(t). It follows from
(2.7) thatS satisfies the Hamilton–Jacobi equation

∂S

∂t
+H(Q,∇QS) = 0. (2.8)

Another important property ofS is the following: denote byJ (Q, q, t) the determinant of
the Hessian (matrix of second derivatives) ofS(Q, q, t):

J (Q, q, t) = det
∂2S

∂Q∂q
(Q, q, t). (2.9)

ThenJ satisfies the ‘continuity equation’.

∂J

∂t
+∇Q · J∇pH = 0. (2.10)

(See [16, lemma 3.2.1, p 96]). This property in fact holds true for the free generating
function determined by anarbitrary Hamiltonian. However, in the present case (quadratic
Hamiltonian) theft are linear, and the generating functionS is thus itself quadratic in the
variablesQ andq, as can easily be seen from (2.4) and (2.7), so thatJ does not contain
the variablesq andQ. Equation (2.10) thus becomes

∂J

∂t
+ J∇2

QS = 0 (2.11)

noting that∇PH = ∇QS in view of (2.3) and (2.6). Let nowψ0 be an ‘initial wavefunction’;
we assume thatψ0 is in the Schwartz spaceS(Rnq), but the argument we are going to present
obviously remains valid under less stringent conditions onψ0. We claim that a solution to
Schr̈odinger’s equation

ih̄
dψ

dt
= H(q,−ih̄∇q)ψ (2.12)

is given, for 0< |t | < T , by the formula

ψ(q, t) = (2ψ ih̄)−n/2a(t)
∫

exp

(
i

h̄
S(q, q ′, t)

)
ψ0(q

′) dnq ′ (2.13)

wherea(t) is a conveniently chosen ‘square root’ ofJ (t). In fact, that square root can be
chosen in such a way that

lim
t→0

9(q, t) = 90(q). (2.14)



4242 M de Gosson

The proof goes as follows. Differentiating both sides of (2.13) with respect to the variable
t and taking the Hamilton–Jacobi equation (2.8) into account, we get

ih̄
∂ψ

∂t
= (2π ih̄)−n/2

∫
exp

(
i

h̄
S

)[
H(q,−ih̄∇qa)+ ih̄

∂a

∂t

]
ψ0(q

′) dnq ′.

Performing similar calculations for the second-orderq-derivatives we also have

H(q,−ih̄∇q)ψ = (2π ih̄)−n/2
∫

exp

(
i

h̄
S

)[
H(q,−ih̄∇qa)+ 1

2
a∇2

qS

]
ψ0(q

′) dnq ′.

Now, a = √J satisfies the equation

∂a

∂t
+ 1

2
∇2
qS · a = 0 (2.15)

in view of (2.10) andψ thus solves Schrödinger’s equation (2.12) as claimed. Suppose
now we let t → 0+; we can evaluate the integral on the right-hand side of (2.12) by the
method of the stationary phase, and one finds that limt→09(q, t) = ±90(q), depending on
how the argument of the square root ofJ is chosen: ifJ (t) > 0 then

√
J (t) = ±(J (t))1/2,

if J (t) < 0 then
√
J (t) = ±i|J (t)|1/2. It turns out that there exists efficient and systematic

procedures for determining the correct choice; they suggest to us the notion ofMaslov index
which we have extensively analysed in [6–8]. If, for instance, we writeft in block-matrix
form

ft =
(
A(t) B(t)

C(t) D(t)

)
then a straightforward calculation involving (2.6) yields

S(q, q ′, t) = 1
2DB

−1q · q − B−1q · q ′ + 1
2B
−1Aq ′ · q ′ (2.16)

and

ψ(q, t) =
(

1

2π ih̄

)n/2
im(t)| det(B(t))|−1/2

∫
e(i/h̄)S(q,q

′t)ψ0(q
′) dq ′ (2.17)

wherem(t) is the inertia(= number of less then zero eigenvalues) of the matrixB(t); one
thus recovers the Robbin–Salamon formula (theorem 8.5 in [17]). We shall not continue to
discuss these formalities here, because what is really important for our present purpose is that
we used, to derive Schrödinger’s equation (2.12), the only Hamilton–Jacobi equation (2.8)
together with equation (2.14) which governs the evolution of thesquare rootof a density,
i.e. of ahalf-density. We notice that explicit formulae of the type (2.17) are often used in
the physical literature, the usual reference being Feynman–Hibbs [4]. We want, however,
to emphasize that this formula is not obtained by dubious ‘path integral’ techniques, but is a
simple rigorous consequence of classical Hamilton–Jacobi theory as we have just shown. We
also observe that from classical mechanics we cannot claim that we have derivedquantum
mechanics: we have only derived Schrödinger’s equation. For quantum mechanics to
become effective one needs to justify the need for Planck’s constant ¯h. This is particularly
apparent for Hamiltonians of the type considered in this section, because of Ehrenfest’s
theorem on average values. For instance, if one imposes that the initial wavefunction90 is
a Gaussian ‘minimum wavepacket’, then the evolution of|9(q, t)|2 and of |8(p, t)|2 (8
the Fourier transform of9) is that of classical Gaussian probability densities with spreading
1q(t) and1p(t) such that1p(t)1q(t) > h̄/2 and this is true forany value of h̄. For a
discussion of the need for Planck’s constant, and an effective quantization procedure making
use of the Maslov index and leading in a rigorous way to the EBK condition we refer the
reader to [8, 9, 12, 13].
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3. Moving half-densities by the Bohmian flow

From now on we assume thatH is a Hamiltonian function of the more general type

H = p2

2
+ U(q, t) (3.1)

the potentialU being aC∞ function of positionq and timet . We assume that the solution
ψ of the associated Schrödinger equation

ih̄
∂9

∂t
= H(q,−ih̄∇q)9 ψ(t = 0) = ψ0 (3.2)

exists and isuniquely defined for allt in some interval [−T , T ] (or [0, T ]). If we write ψ
in polar form as

ψ(q, t) = exp

(
i

h̄
S(q, t)

)√
ρ(q, t) (3.3)

then the functionsS andρ satisfy Bohm’s equations (see [3, 13])

∂ρ

∂t
+∇q(ρ∇qS) = 0 (3.4a)

∂S

∂t
+H(q,∇qS) = h̄

2

2

∇2
q (
√
ρ)

√
ρ

(3.4b)

at all points whereρ does not vanish (we assume throughout thatS andρ are sufficiently
smooth (for instance,C∞) so that the equations (3.4) make sense). Introducing thequantum
potential

Uψ = −h̄
2

2

∇2
q (
√
ρ)

√
ρ

(3.5)

which only depends on the initial functionψ0 which totally determinesψ (and henceρ and
S), we can rewrite equation (3.4a) in the very suggestive form

∂S

∂t
+Hψ(q,∇qS) = 0 (3.4c)

whereHψ (‘ the Bohmian’) is the sumH +Uψ . Equation (3.4c) is obviously nothing more
than the Hamilton–Jacobi equation for the Bohmian functionHψ .

Remark. It is common practice among physicists to calculate ‘approximations’ to the
solutions of (3.2) by ‘neglecting’ the quantum potentialUψ and replacing the correct
equation (3.4c) by its classical counterpart (2.8). However, this is indeed a risky procedure:
it is not because there is a factor of order O(h̄2) in front of the expression on the right-hand
side of formula (3.5) that the quantum potentialUψ is necessarily small. In fact, sinceρ
depends on ¯h it can very well happen thatUψ ‘blows up’ at the limith̄→ 0 (see [13] for
examples where this occurs). In fact, the validity of the approximation ‘Uψ = 0’ is closely
related to that of the method of the stationary phase, when one tries to estimate the solution
ψ written in integral form (as in formula (2.13) for instance).Whenthe method does apply
(this is the case for (2.13) when the initial wavefunction has compact support), then the main
contribution at the limit ¯h→ 0 comes from the critical points of the generating function, and
one shows that the result amounts to moving the wavefunction along theclassical trajectory
associated with the original HamiltonianH .



4244 M de Gosson

Settingt = 0 in (3.3) the initial wavefunction can be written as

ψ0(q) = exp

(
i

h̄
S0(q)

)√
ρ0(q) (3.6)

whereρ0 = ρ(q, 0) andS0 = S(q, 0) are realC∞ functions defined on some open domain
D of Rnq . Let L0 be the graph of the gradient ofS0; it is the manifold

L0 = {(q, p) : p = ∇qS0(q), q ∈ D}. (3.7)

L0 is in fact a Lagrangian submanifold of the phase spaceRnq×Rnp, that is, it has dimension
n and the canonical symplectic form

� = dp1 ∧ dq1+ · · · + dpn ∧ dqn

vanishes on any pair of tangent vectors toL0. We notice that sinceL0 is a graph, the
restrictionπ0 to L0 of the projectionπ : (q, p) → q is a diffeomorphism and (L0, π0) is
thus a global chart.

Denote now by(f ψt,t ′)t,t ′ the time-dependent flow associated with the ‘Bohmian’Hψ ;

f
ψ

t,t ′ is thus the symplectic transformation of phase space defined by

(qψ(t), pψ(t)) = f ψt,t ′(q, p)
if and only if

dqψ

dt
= ∇pHψ dpψ

dt
= −∇qHψ (3.8)

and qψ(t ′) = q, pψ(t ′) = p. Using the Bohmian flow thus defined we can carry the
manifoldL0 in phase space to another manifoldLt . Defining

Lt = f ψt (L0) f
ψ
t = f ψt,0 (3.9)

we obviously havef ψt,t ′(Lt ′) = Lt .

Proposition 1. The manifoldLt is a Lagrangian submanifold ofRnq × Rnp which projects

diffeomorphically onDt = f ψt (D0). In factLt is the graph

Lt = {(Q, P ) : P = ∇QS(Q, t)} (3.10)

and we have, moreover,

S(qψ(t), t) = S0(q)+
∫ t

0
p dq −Hψ dt ′ (3.11)

where the integration is performed along the phase-space trajectory leading from (q,∇qS0)
at time t = 0 to (Q, P ) = (qψ(t),∇qS(qψ(t), t)) at time t .

Proof. That Lt is a Lagrangian manifold is clear, becausef ψt is a symplectic mapping
and as such preserves the symplectic structure:(f

ψ
t )
∗� = �. Formula (3.11) is a classical

application of Hamilton–Jacobi theory (see [1, ch 9]): define the action function

8(Q, t) = S0(q)+
∫ t

0
p dq −Hψ dt ′

where the integration is performed along the trajectory from (q, p,0) to (Q,P, t). Then

d8(Q, t) = P dQ−Hψ dt
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so that we have

P = ∂8

∂Q
(Q, t)

∂8

∂t
= −Hψ(Q,P, t).

In particular,8 satisfies the Hamilton–Jacobi equation (3.4c) with initial conditionS0, and
hence8 = S; formulae (3.10) and (3.11) follow. �

Remark. The fact thatLt is itself a graph is noticeable, because, in general, Hamiltonian
flows deform graphs in such a way that they become new manifolds which usually ‘bends’
after some timet , and thus are no longer graphs. This well known phenomenon is at the
origin of the appearance of ‘caustics’, that is, of points of the deformed manifold who admit
no neighbourhood projecting diffeomorphically on configuration space (see [1, 9, 14, 15] and
the references therein). The appearance of these caustics is actually an artifact of Hamilton–
Jacobi theory, related to the impossibility of finding global solutions to the Hamilton–Jacobi
equation. This does not happen in our case, because we already have at hand a globally
defined solution, namely the phaseS(q, t) of the wavefunction.

We now return to the half-density interpretation of wavefunctions. Our main result is
the following.

Proposition 2. The notation being as in proposition 1, we have

(qψ(t), t) = exp

[
i

h̄

∫ t

0
p dq −Hψ dt ′

]∣∣∣∣ det
∂qψ(t)

∂q

∣∣∣∣1/290(q) (3.12)

where∂qψ/∂q is the Jacobian matrix; denoting by dnq the Lebesgue measure onRnq and
by |dnq|1/2 the associated half-density, formula (3.12) is equivalent to

9(Q, t)|dnQ|1/2 = exp

[
i

h̄

∫ t

0
p dq −Hψ dt ′

]
90(q)|dnq|1/2. (3.13)

Proof. The equivalence of (3.12) and (3.13) is clear in view of the definition of the half-
density|dnq|1/2 (see, for instance, [19]). On the other hand, the arguments of both sides of
(3.12) (or (3.13)) are equal in view of (3.11), so that all we have to prove is the equality of
the moduli of both sides of (3.12). This amounts to proving that

ρ0(q) = ρ(qψ(t), t)
∣∣∣∣ det

∂qψ(t)

∂q

∣∣∣∣ (3.14)

which is, in fact, an immediate consequence of (3.4a): it is a classical results from fluid
mechanics that if a functionρ is the solution to the continuity equation

∂ρ

∂t
+∇q(ρV ) = 0

whereV = V (q, t) is some fluid velocity field, thenρ(q, t) satisfies the relation

ρ(q, 0) = ρ(q(t), t)
∣∣∣∣ det

∂q(t)

∂q

∣∣∣∣.
Applying this formula to (3.4a) with V (q, t) = ∂S(q, t)/∂q yields (3.13). �
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4. Semiclassical approximation

Suppose now that the quantum potentialUψ can be neglected. Formula (3.13) then becomes
in view of (3.11), as long ast is small,

(q(t), t) = exp

[
i

h̄
8(q(t), t)

]∣∣∣∣ det
∂q(t)

∂q

∣∣∣∣1/290(q) (4.1)

where8 = 8(q, t) is the solution of the classical Hamilton–Jacobi equation

∂8

∂t
+H(q,∇q8, t) = 0 8(q, 0) = S0(q) (4.2)

andq(t) andp(t) are the solutions of Hamilton’s equations

dq(t)

dt
= ∇pH(q(t), p(t), t) dp(t)

dt
= −∇qH(q(t), p(t), t). (4.3)

For larger values oft , the solution to (4.2) will, in general, no longer exist.However, the
action integral

W =
∫ t

0
p dq −H dt ′ (4.4)

does,but it will in general be multiple valued: as discussed previously,L(t) = ft (L0)

(the image ofL0 by the flow (ft )t determined by (4.3)) is usually no longer a graph,
so that there will be several points (q(t), Pj ) of Lt with the same projectionq(t) on
the configuration spaceRnq . Defining the points(qj , pj ) ∈ L0 by ft (qj , pj ) = (q(t), Pj )

the correct formula that replaces (4.1) for arbitraryt takes into account the contributions
from all the classical trajectories starting from the points (qj , pj ) and ending at the points
(q(t), Pj ) = (q(t), pj (t)). One then recovers Maslov’s formula for the semiclassical
approximation (see [1, 9, 11, 16])

9(q, t) =
∑
j

e(i/h̄)8j (x,t)iµj
∣∣∣∣ det

∂qj (t)

∂q

∣∣∣∣−1/2√
ρ(q, j) (4.5)

as long as (q, t) is not a ‘focal point’ (i.e.q is not the projection of a point of the caustic).
The functions8j(x, t) are given by

8j(q, t) = S0(qj )+
∫ t

0
L(q, q, t ′) dt ′ (4.6)

whereL = pq −H is the Lagrangian function and theµj appearing as exponents in (4.5)
are integers called ‘Morse indices’ of the trajectories fromqj to q(t) (see [1, appendix 11].
We refer the reader to [9–11] for a thorough study of formulae (4.5) and (4.6), and of the
relation between the Morse indices and the Maslov index).

5. Conclusion

The semiclassical formula (4.5) is usually obtained by quite different approaches, which,
however, have in common the fact that they all make use of the method of the stationary
phase. The way we have derived formula (4.5), which only makes use of proposition 2,
shows that the half-density approach might be a promising one, both in standard quantum
mechanics and in quantum theory of motion. We think that this method, therefore, certainly
deserves further study because it might be the key to a better understanding of quantum
mechanics.
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